Final Touch for the Environmental Engineering Students at the Onset of their Profession: Senior-Year Graduation Design Project, 2014-2015

Feasibility Study for and Design of a Biological Wastewater Treatment Plant for Duzce Province- Marmara Region, Turkey – ARITIYOR ENvirCo.

ICL2015 / Int. Conf. on Interactive Collaborative Learning and Engineering Pedagogy, Firenze-ITALY / 21.09.2015

ITU / EEUP

ISTANBUL TECHNICAL UNIVERSITY (ITU)

- Founded in 1773 → first engineering academy of the country
- Among top-ranked public universities in TR
- > 25,000 undergrad students

 23 engineering undergrad programs → accredited by ABET EAC (Accreditation Board for Engineering and Technology, Engineering Accreditation Commission)

Environmental Engineering Undergraduate Program (EEUP)

	ISTANBUL TE						ITU - Faculty of Civil Engineering - Contact
m	ENVIRONM	1EN IAL E	Dil Seçimi: 🤷 Türkçe				
Home	Accreditation	Education	Research	Faculty & Staff	Department	Alumni	
ABET	Accreditatio	on					

ITU Environmental Engineering Undergraduate Program: Accredited by the Engineering Accreditation Commission (EAC) of ABET, <u>www.abet.org</u>. Related links:

- <u>ABET-Accredited Program Search</u>
- ABET-Students and Families
- ABET-Why Accreditation Matters

ITU-EEUP-GDP

ITU - Environ Engr Undergrad Curriculum

- senior-year students
 → «today's students, tomorrows' colleagues»
- equip them with engr, sci & technol tools useful in professional life
- contribute to the public meaningfully and efficiently,
- serve for a sustainable society resilient enough to face, combat, and live thru the inevitable and fast changes of the modern times

Help students

- develop self-learning strategies,
- engage in active learning,
- enhance their problem-solving abilities,
- foster development of critical thinking skills & decision-making abilities,
- promote collaborative/cooperative learning
- sharpen communication skills through short- or long-term team works focused on REAL-LIFE PROBLEMS

Problem-Based Learning (PBL)

- one of the **anchors** of effective engineering education and of significance in design and content of ITU-EEUP
- several compulsory courses (junior/senior years) → designed & taught mainly w/a specific focus on PBL → e.g. Graduation Design Project (GDP)

METHODOLOGY – Main Line

Graduation Design Project (GDP)

- Compulsory \rightarrow offered in both semesters at the **senior-year**
- Student teams → 4-5 students/team
- Assignment (18-19 weeks) → design an environ engr system to provide solutions to the real-world environ problems of selected regions in Turkey
- Weekly meetings: Student Team + 2 Profs + 2 TAs → Presentation of results
- Weekly seminars: invited experts from professional life
 - → Mostly: design of a WWTP (incl. sewer system, wastewater treament facility, treatment sludge handling & management, etc.]

Project management work packages:

- overall framework,
- prep work and info collection regarding the project area:
 - > population, demography, current infrastructure & public services, environ impacts, etc.
 - > technical site-visits, meetings with local authorities,
- conceptual design,
- · comparative evaluation of process/system alternatives,
- · detailed process-, hydraulic-, and architectural-design and piping,
- instrument selection and P&I,
- brief risk assessment,
- financial analyses,
- project management,
- feasibility report,
- technical drawings,
- final project report
- · defense in front of a jury and audience

NEW entries introduced 2014-2015 Spring

WHAT's NEW in ABET?

Changes in Program Criteria for Environ Engr

ABET EAC 2010-2011 Prog Criteria	ABET EAC 2015-2016 Prog Criteria
 1. Curriculum The program must demonstrate the graduates have: proficiency in mathematics through differential equations, probability and statistics, calculus-based physics, general chemistry, an earth science, e.g., geology, meteorology, soil science, relevant to the program of study, a biological science, e.g., microbiology, aquatic biology, toxicology, relevant to the program of study, and fluid mechanics relevant to the program of study; introductory level knowledge of environmental issues associated with air, land, and water systems and associated environmental health impacts; an ability to-conduct laboratory experiments and to eritically analyze and interpret data in more than one major environmental health; an ability to-perform engineering design by means of design experiences integrated throughout the professional component of the curriculum; proficiency in advanced principles and practice and the roles and responsibilities of public institutions and private organizations pertaining to environmental engineering. 	 1. Curriculum The curriculum must prepare graduates to apply knowledge of mathematics through differential equations, probability and statistics, calculus-based physics, chemistry (including stoichiometry, equilibrium, and kinetics), an earth science, a biological science, and fluid mechanics. The curriculum must prepare graduates to formulate material and energy balances, and analyze the fate and transport of substances in and between air, water, and soil phases; conduct laboratory experiments, and analyze and interpret the resulting data in more than one major environmental engineering focus area, e.g., air, water, land, environmental health; design environmental engineering systems that include considerations of risk, uncertainty, sustainability, life-cycle principles, and environmental impacts; and apply advanced principles and practice relevant to the program objectives. The curriculum must prepare graduates to understand concepts of professional practice, project management, and the roles and responsibilities of public institutions and private organizations pertaining to
	environmental policy and regulations.

METHODOLOGY – What's New in GDP?

NEW Themes

Environmental Management Considerations (ABET EAC,15-16): risk, uncertainty, sustainability, life-cycle principles, and environmental impacts Advanced Principles & Practice

NEW Teaching

Strategies

Mentors

(instead of instructors)

Peer Reviewer

GDP

Info and data collection Technical site-visit Meeting w/ local authorities Conceptual design Solution alternatives Detailed design and technical drawings (process, hyrdaulics, architecture, P&I) Risk assessmnet Financial analysis Feasibility Final report Defense

NEW Technol

Advanced Principles & <u>Practice</u> An Innovative Treatment Technol as main WWT unit

METHODOLOGY – What's New?

NEW Themes risk, uncertainty, sustainability, life-cycle Teaching environmental impacts Strategies

GDP

NEW

Mentors

Peer Reviewer

NEW Technol Innovative WWTP

Team Structure and Project Management:

- Senior-year students (4) \rightarrow members of the GDP-team [& partners of the virtual project management company (ARITIYOR ENvirCo.)]
- **Peer reviewer** (1) jr engineer (grad of Class2014) joined the team \rightarrow senior reviewer of the team [& consultant of the virtual Co.]
- Mentors (2 Profs. + 2 TAs) \rightarrow instead of conventional "instructors" \rightarrow mentors of the team [& external senior & junior consultants of the virCo.]

METHODOLOGY – What's New?

NEW Themes risk, uncertainty, sustainability, life-cycle principles, environmental impacts

GDP

NEW

Teaching

Strategies

Mentors

Peer Reviewer

New themes outlined by ABET EAC (2015-2016) incorporated:

- risk assessment (RA)
- uncertainty
- sustainability
- life cycle principles
- project management, and further
- risk assessment-management (RAM)
- life-cycle-assessment (LCA)
- resilience analysis

Technology selection for designed BioWWTP:

Innovative Aerobic Granular Activated Sludge

(AerGAS) Technology – Greenfield parallel extension-

http://www.royalhaskoningdhv.com/en-gb/nereda

OUTCOMES – Uncertainity

NEW Teaching Strategies Mentors

Peer Reviewer

NEW Themes

GDP

NEW Technol Innovative WWTP

Highlights of Uncertainty Considerations:

<u>**Common</u>** and precautionary practice:</u>

- safety factors/coefficients in process calculations and WWTP design
- Ensures reaching the set effluent standards even under conditions of continuously fluctuating influent overflow rates and pollution loads

<u>Avoid</u> inflated safety factors

- May result in overdesign!
- Will jeopardize feasibility of the project!

<u>Applied</u> design approach for each treatment unit:

- basic, simple, yet flexible and ensuring the effluent standards
- Final Check! → all calculation / designs strictly checked against design-, average-, and peak- flow rates

OUTCOMES – *Risk Assessment*

Highlights of RAM

Conventional -Risk identification, assessment, management aspects:

- occupational health and safety
- legal responsibilities
- financial threats

Integrated RA + perspective of real-world experiences

- most frequent risk factors identified
- data collection and analysis → occupational accidents occurred in TR (past 5 years) in operating WWTPs

✓ Emergency Action Plan (EAP)

- specific high-risk units & high-risk maintenance activities of the designed treatment facility
- precautionary measures & responses in case of possible high risks
- precautionary steps outlined and imposed by the related state authorities and controlling bodies, as well as the most up-to-date national legislation → closely followed

✓ Financial risk analyses

- Cost analyses (full treatment train)→ capital, operational, maintenance costs, tariff values
- Result → innovative AerGAS WWTP → more feasible and less prone to financial risks compared to the conventional alternative

NEW -Risk identification, assessment, management aspects for AerGAS Technol:

- first in Turkey
- risks of implementing the innovative AerGAS Technol as the treatment alternative
- Result → main risks with mid-to-high impact were mostly due to the innovative nature of the AerGAS technology [Table-I]

NEW Themes risk, uncertainty, sustainability, life-cycle

environmental impacts

GDP

NEW

Technol

Innovative

WWTP

NEW

Teaching

Strategies

Mentors

Peer Reviewer

OUTCOMES – *Risk Assessment*

NEW Teaching Strategies Mentors

GDP

Peer Reviewer

NEW Technol Innovative WWTP

11

NEW-Additional Risk Assessment

Specific for implementation of Innovative AerGAS Technology

(RA in addition to the Emergency Action Plans)

TABLE I. RISK ASSESSMENT FOR INNOVATIVE AEROBIC GRANULAR ACTIVATED SLUDGE TECHNOLOGY

River*		Scoring ^b				
	PERC		2	2	3	
	Success/failure of this new technology and					
A	effect on acceptance of innovative					
	technologies in general					
1.	Failure of a new technology may adversely				х	
	affect innovation in general					
2.	Stricter effluent requirements complicate the		х			
	choice for innovative technology					
B	Economical risks					
3.	Capital costs due to construction and					
	implementation of this innovative system			х		
	might exceed acceptable boundaries					
4.	Local/national market perspectives may be					
	limited due to preliminary difficulties in				X	
	implementation of innovative technologies					
5.	International market interest, demand, and	x				
	profit return might be too low					
C	Sensitivity of the treatment process					
	The system may not cope with influent					
6.	fluctuations (volume, composition,	X				
	temperature)					
7.	Controllability of formation, maintenance,		x			
	structural/functional stability of AsrGAS					
8.	Operational instability due to lack of self-		x			
	regulation					
9.	Expensive back-up mechanisms needed in					
	case of stopping the process due to lack of			X		
	robustness might increase costs					
	la a se					

Ride*		Scoring ^b				
		0	1	2	3	
D	Lack of similar full-scale systems and possible problems in up-scaling the present lab- and pilot-scale applications					
10.	Although couple of lab-scale [12-15] and one pilot-scale [16] AerGAS studies have been executed in Turkey, certain factors, and thus results of those studies might fail to be representative			x		
11.	No similar full-scale systems are present in Turkey as of today, and certain factors can only be assessed in full-scale			x		
E	Meeting discharge requirements and such					
12.	The process fails to meet the effluent discharge standards		X			
13.	The system fails to meet excess sludge handling requirements	X				
¥.	Other Risks					
14.	Difficulties in sludge processing compared to handling of conventional AS		х			
15.	Difficulties in allocating adequately qualified and competent operators, etc.				х	
16.	Process calculations and technical design, done for the first time in Turkey, failing to represent real-world conditions		x			

* Entries in the table were adapted (with some modifications) from [11]

OUTCOMES – Sustainability

NEW Teaching Strategies Mentors

GDP

Peer Reviewer

NEW Technol Innovative WWTP

Highlights of Sustainability:

Economic Aspects

- capital-, operational-, maintenance- costs including:
- · land requirement, number & capacity of selected mechanical equipment,
- choice of treatment technol

Innovative AerGAS WWT Technology

- significant energy savings and lower operational costs:
- 24% less energy than conventional A2/O WWTP
- 26% lower overall operational costs than conventional A2/O WWTP

Land requirement

- Lower land requirement:
- 60% smaller land than that needed for conventional system
 - excellently settling compact structure of granular sludge and SBR config \rightarrow
 - reactors with *smaller footprints*,
 - no separate secondary clarifiers
 - unused area \rightarrow recreational activities
 - lessen social resistance and negative response to the treatment plant
 - mitigate presumed negative impacts on the local community

CO₂ emissions

- Reduced energy consumption → less indirect atm CO₂ emissions
- pursuing public health aspects and further contributing to sustainability

OUTCOMES – LCA

NEW Teaching Strategies Mentors

Peer Reviewer

NEW Themes risk. uncertainty.

GDP

NEW Technol Innovative WWTP

Highlights of Life Cycle Assessment (LCA):

- evaluate total environ impact of treatment processes
- understand how to avoid shifting environ impacts from one place to another
- used framework/standards → ISO 14040:2006 standard

1. Defining scope and goal:

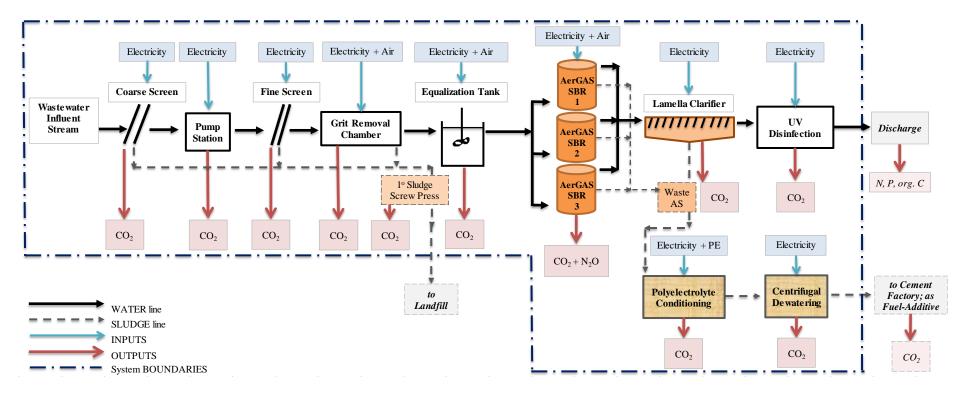
- select proper and representative system boundary
- Result → exclude impacts due to construction activities and focus on 30-years operational period

2. Inventory analysis:

- plentiful data available → process calculations, system design equipment selection were carried out by Team-7 (data : **not** the limiting factor)
- required to check reliability of data vs actual indicators from similar plants →
- Data collection & comparison → energy requirement data from currently operating fullscale AerGAS WWTPs
- Result → flowchart incl. inputs /outputs in & out of each unit of the designed WWTP (Fig.1)

3. Impact analysis:

- determine impact categories before to calculate & assess important impact factor
- Result → focus on "Global Warming Potential (GWP)" → simple yet representative major impact category (publically accessible tools & software)


4. Interpretation (estimating GWP of the WWTP):

- N, P, organic-C emissions to aquatic environ (discharge to Melen Creek, Turkey)
- indirect atmospheric inorg. C & N emissions (CO₂ equivalence) from the designed treatment facility
- AerGAS WWTP \rightarrow lower energy consumption of \rightarrow lower CO₂ emissions
- Approx. 50% CO₂ emissions (7% from N_2O) \rightarrow due to **pumping**
- Main biological unit \rightarrow lesser share in the GWP of the system

Life cycle assessment (LCA)

Inventory analysis for the AerGAS-based BioWWTP designed for Duzce Province- Marmara Region, Turkey

OUTCOMES

NEW Teaching Strategies Mentors Peer Reviewer NEW Themes risk, uncertainty, sustainability, life-cycle principles, environmental impacts **NEW** Technol Innovative wwTP

GDP

Highlights of Resilience Analyses:

- Interrelations between resiliency & sustainability → sustainability of civil structures is heavily dependent on resiliency of operation;
- basic but important precautionary actions planned mainly considering the threats due to **earthquakes** and **floods**.
- guidelines \rightarrow by Environmental Protection Agency-EPA
- Process \rightarrow 6 basic prevention aspects determined
- Example \rightarrow protecting sensitive equipment from floods by building barriers and blocks, etc.

✓ RESULTS:

- most important element → emergency back-up generators and back-up reserves: crucial in terms of independent operation during times of crisis and natural disaster.
- critical aspects of resiliency → Interdependency
- included in assessment and planning → dependencies to other infrastructure systems:
- Designed WWTP would be compatible with earthquakes or floods, YET
- recovery period would heavily depend on the conditions of other infrastructures (i.e., transportation corridors, energy infrastructure, supply chains, etc.).

CONCLUSIONS / Student Entries - I

Inclusion of **new environ management considerations** in the GDP

New approaches of handling problem/design-based education

significantly **broadened the perspective** of **our senior-year students**, as obvious from **their comments** on

risk concepts, risk assessment-management, uncertainty, sustainability, life-cycle-assessment, and resilience:

- Risk management → inevitable for sustainable engineering systems. Identification, assessment, evaluation of natural and/or man-made risks & hazards must be among the **priorities** of a sustainable engineering perspective.
- 2. Sustainability: "meeting todays' demands without compromising the needs of next generations" → not only an issue of management of energy resources, but also should be the motto for existence & coherence of civil works/services contributing to the prosperity and resilience of the public, and to preserve, protect, remediate environment.
- Putting every step of this project into the "sustainability" perspective → not only positively influenced the entire design- and decision making- phases, but also enabled us to get one step closer to today's real-world standards in environ problem solving.
- **4. Preparedness** embodied in "risk analyses & management" → will ensure that projects and services **meet real-world expectations & needs** → will also provide the chance to establish a **sustainable operational practice**.

CONCLUSIONS / Student Entries - II

- 5. Risk management should be included in environ edu in a cause-and-effect context. Multidisciplinary approaches should be used in RA.
- 6. Taking risks does not always mean bravery; rather it might be a sign of illiteracy. Hence, backup plans are always necessary.
- Risk management should be done by an engineering approach based on scientific facts, technical analyses & calculations beyond assumptions and probabilities.
- 8. Understanding the principles and purpose of "life-cycle assessment (LCA)" was one of the most important gains from this project → a valuable tool to be used frequently and effectively in Environmental Engineering profession
- 9. LCA is a powerful tool for understanding material and energy cycles. Besides, it clearly demonstrates that transferring pollution from one location/medium to another does not provide a sustainable and integrated Environmental Engineering solution.
- 10.Resilience was an important new consideration in environ management → broadened our vision by requiring us to consider the interdependencies of the designed treatment plant to other civil infrastructures in case of natural disasters and such.
- 11. Consideration and assessment of **resiliency** is prone to help **create flexible** and **robust solutions** in all engineering disciplines.

ACKNOWLEDGMENT ITU CE3 / Istanbul Technical University Center for Excellence in Engineering Education

